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Abstract In this paper we formulate a nonlinear optimization model to estimate popu-
lation class sizes based on sample information. The model is nonconvex and has several
local minima corresponding to different populations that could have been the source of the
sample data. We show that many if not all local solutions can be found using a new global
optimization algorithm called OptQuest/NLP (OQNLP). This can be used to estimate the
number of individuals in a population with unique or rarely occurring characteristics, which
is useful for assessing disclosure risk. It can also be used to estimate the number of classes
in a population, a problem with applications in a variety of disciplines.

Keywords Global optimization · Confidentiality · Disclosure risk · Number of species ·
Nonlinear programming · Microdata · Statistical estimation · Computational experiments

1 Introduction

Government agencies collect and release data related to a variety of topics including income,
unemployment, crime, and healthcare. The data are used by policy makers and to meet the
needs of researchers. Data collection in the private sector has also soared. For example,
corporations now collect information on shopping patterns of hundreds of millions of con-
sumers. As more information is collected, the public has become increasingly concerned
about confidentiality.

Before a data set is released, obvious identifying information such as name, address, tele-
phone number, etc. are deleted. However, this may not be sufficient to prevent disclosure.
Willenborg and de Waal (2001) illustrate the problem with an example of an academic econ-
omist studying data from a government survey of income and expenditure. If the economist
happens to discover data about a female dentist living in a specified area and he also happens
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to know there is only one such dentist in the area, then he could misuse sensitive information.
This type of disclosure occurs when an individual has a set of characteristic values that are
unique both in the data set and in the population. If there were actually two or three female
dentists in the area, but the economist believes there is only one, it is still possible to misuse
sensitive information. Therefore, data coming from rarely occurring sets of values has the
potential for misuse.

To protect confidentiality, it is necessary to distort or summarize the data before it is
released. Disclosure control techniques include recoding (Hurkens and Tiourine 1998), cell
suppression (de Waal and Willenborg, 1998), data swapping (Dalenius and Reiss 1982), add-
ing noise (Kim 1986), and rounding (Dalenius 1981). These techniques prevent individuals
from being identified, but they also involve some loss of information. In order to balance
the conflicting goals of protecting confidentiality (avoiding disclosure) and providing high
quality information, it is important to accurately assess disclosure risk.

In this paper, we formulate an optimization model to estimate population class size distri-
butions based on sample information. Usually, disclosure risk is assessed by estimating the
number of individuals in a population with unique characteristics. This ignores the disclosure
risk for individuals with rarely occurring, but not necessarily unique characteristics. Since
we estimate all class sizes, the results can be used to better assess disclosure risk.

The results from our optimization procedure can also be used to estimate the number of
classes in a finite population. This is a problem that has been studied for over 60 years by
researchers from a variety of disciplines. A review by Bunge and Fitzpatrick (1993) on the
problem lists over 125 references. Applications range from biologists and ecologists inter-
ested in estimating the number of species in plant or animal populations to linguists interested
in estimating the size of an author’s vocabulary (Efron and Thisted 1976). Our results can
be used to estimate the number of unduplicated signatures on a petition (Smith-Cayama
and Thomas 1999), the number of distinct names on a combination of administrative lists
(Madigan and York 1997), or the number of distinct values of each attribute in a relational
database (Haas et al. 1995).

Various models have been proposed in the literature for the purpose of estimating the num-
ber of population uniques from a sample of data. A Poisson-Gamma (Bethlehem et al. 1980)
model, Poisson-lognormal (Skinner and Holmes 1993) model, negative binomial (Chen and
Keller-McNulty 1998) model, Dirichlet-multinomial (Takemura 1999) model, and a gener-
alization of the Dirichlet multinomial model based on Pitman’s sampling formula (Hoshino
2001) have all been proposed. Greenberg and Zayatz (1992) proposed a procedure that is
not dependent on a model for the population of class sizes. Unfortunately, none of these
approaches have been totally successful. Each method may work well for one population,
but work poorly for another with different characteristics. The problem of estimating the
number of species in the population also does not have a solution that works well for all
populations.

The problem of estimating population class sizes is difficult because, especially as the
sampling fraction decreases, samples from two or more very different populations can be
nearly identical. The optimization model we develop is nonconvex and has several local min-
ima corresponding to different populations that could have been the source of the sample data.
We show that many if not all local solutions can be found using a new global optimization
algorithm called OptQuest NLP (OQNLP). Section 2 of this paper describes Greenberg’s
(2003) recursive algorithm and its performance. The non-linear program is developed in
Sect. 3. Section 4 describes the OQNLP algorithm and the GAMS modeling language used
to pose our test problems. Section 5 provides computational results, with conclusions in
Section 6.
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2 Recursive algorithm

Let µi and pi be respectively the number and proportion of classes of size i in the population.
That is,

pi = µi

/∑
all i

µi . (1)

Let mi be the number of classes of size i in the sample. Greenberg’s (2003) algorithm finds
a solution to (1) and the following two sets of equations:

P(i p| js) = pi P( js |i p)

i∑
j=1

pi P( js |i p)

, (2)

and

µi =

i∑
j=1

mj P(i p| js)

1 − P(0s |i p)
,

(3)

where P( js |i p) is a hypergeometric probability:

P( js |i p) =

(
i p

js

) (
Np − i p

Ns − js

)
(

Np

Ns

) , (4)

where Np is the size the of population and Ns is the size of the sample. P(i p | js) is the
probability that a class of size j in the sample appears as a class of size i in the population and
can be calculated using Bayes’ Rule in (2). Equation (3) is a method of moments estimate
for µi . P( js |i p), µi , and pi are solved for recursively as follows.

Step 1: Estimate pi using the sample data, p̂i = mi

/ ∑
all i

mi .

Step 2: Solve for P(i p| js) using (2).
Step 3: Solve for µi using (3).
Step 4: Solve for pi using (1).
Return to Step 2 and continue until the procedure converges.

The upper limit M on the sums in (1), (2), and (3) is selected so that

M∑
i=1

iµi = Np, (5)

is satisfied as closely as possible. This is done by initially letting M be equal to the largest
class size in the sample. M can be increased until (5) is satisfied or nearly satisfied.

Greenberg (2003) demonstrated the recursive algorithm for some challenging examples
suggested by Greenberg and Zayetz (1992). One artificial population (P2) considered had
1000 uniques and 900 groups of 10(µ1 = 1000, µ2 = · · · = µ9 = 0, µ10 = 900). When
sampling rates are moderate to high, the recursive algorithm performs very well. Results for
50, 30, and 20% sampling rates are in Tables 1–3 in the line labeled “Recursive”. However,
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Table 1 Example with 50% sample from P2

obj Class sizes

1 2 3 4 5 6 7 8 9 10

Population 1000 0 0 0 0 0 0 0 0 900
Sample 513 41 100 182 248 167 89 48 12 2
Recursive 1006 0 0 0 0 0 0 0 270 371
L1,1 0.52 1008 0 0 0 0 0 0 0 0 899
error 0.52 0 0 0 0 0 0 0 0 0

Table 2 Example with 30% sample from P2

obj Class sizes

1 2 3 4 5 6 7 8 9 10

Population 1000 0 0 0 0 0 0 0 0 900
Sample 424 208 243 191 79 31 10 2 0 0
Recursive 1044 0 0 0 0 0 0 0 53 848
L1,1 1.1E−4 1044 0 0 0 0 0 0 0 52 849
L1,2 2.5E−1 0 0 0 0 0 0 110 1154 0 0

Table 3 Example with 20% sample from P2

obj Class sizes Norms

1 2 3 4 5 6 7 8 9 10 standard shift

Population 1000 0 0 0 0 0 0 0 0 900
Sample 436 288 185 75 19 4 2 0 0 0
Recursive 837 0 0 0 0 0 0 0 374 580
L1,1 3.26E−4 778 0 0 0 0 102 0 0 153 724 0.25 0.31
L1,2 9.7E−3 0 594 0 0 0 0 0 0 135 760 0.88 0.73
L1,3 1.3E−2 0 0 0 0 0 0 401 0 799 0 1.2 1.28

when sampling rates are lower, Greenberg showed that the recursive algorithm may converge
to a population that could have generated the sample, but not necessarily the one that did.
Table 4 shows that for a 10% sample from P2 (m1 = 449, m2 = 174, m3 = 52, m4 = 10,
m5 = 1) the recursive algorithm converged to a solution with no uniques (µ8 = 224,
µ9 = 913). This is not surprising, since a 10% sample from this population (called P3, and
shown in Table 5), (m1 = 440, m2 = 191, m3 = 48, m4 = 8, m5 = 1) can look very much
like the 10% sample from P2.

In situations where more than one population can generate the same sample, it will be
very difficult (if not impossible) to find a method guaranteed to work well unless additional
information is used. Greenberg (2003) showed that when prior information is available, a
starting point different from the one based on the sample could be used, resulting in a much
better solution. That is, the recursive algorithm converged to different solutions depending
on the starting point. In the absence of reliable prior information, it should be helpful to arbi-
trarily choose a variety of starting points to see whether alternate solutions exist. In practice,
although we can’t determine which solution is correct, it is useful in assessing disclosure risk
to know that the data may have come from two (or more) different populations.
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Table 4 Example with 10% sample from P2

obj Class Sizes Norms

1 2 3 4 5 6 7 8 9 10 standard shift

Population 1000 0 0 0 0 0 0 0 0 900
Sample 449 174 52 10 1 0 0 0 0 0
Recursive 0 0 0 0 0 0 0 224 913 0
Recursive2 935 0 0 0 0 0 0 0 111 807
L1,1 3.0E−4 952 0 0 0 0 0 0 0 82 831 0.09 0.06
L1,2 1.51E−2 0 0 0 0 0 0 538 0 0 624 0.87 1.07
L1,3 1.66E−2 485 310 0 0 0 0 0 0 0 890 0.45 0.35
L1,4 1.83E−2 0 0 0 0 0 0 0 243 895 0 1.21 1.06

Table 5 Example with 10%
sample from P1

obj Class Sizes

1 2 3 4 5 6 7 8 9

Population 0 0 0 0 0 0 0 224 913
Sample 440 191 48 8 1 0 0 0 0
Recursive 0 0 0 0 0 0 0 232 906
L1,1 2.5E−06 0 0 0 10 0 0 97 21 1014
L1,2 4.7E−06 0 0 0 8 0 0 113 0 1021
L1,3 6.0E−06 0 0 0 25 0 0 0 153 965
L1,4 8.6E−06 0 0 0 21 0 0 27 116 979
L1,5 1.4E−05 0 0 0 0 37 0 0 123 982
L1,15 4.7E−06 0 0 0 8 0 0 113 0 1021

3 Formulation as a nonlinear optimization problem

3.1 Basic formulation

For a fixed value of M, the recursive procedure described above is the well known Gauss–
Seidel algorithm (iteration by substitution) applied to the problem of solving the nonlinear
equations (1)–(3), with the added step of increasing M if the calculated population size is
sufficiently smaller than the actual size. This algorithm has rather weak convergence proper-
ties: convergence is guaranteed if the solution exists and is unique, the initial guess is in some
neighborhood of the solution, and the Jacobian matrix of the nonlinear functions is diagonally
dominant (White and Sangiovanni-Vincentelli 1987.). It may also converge to different final
points from different initial points. Since, the ability to identify many possible solutions is
desirable when the sampling rate is low, we have developed an alternative solution procedure
which uses an optimization formulation, and automatically finds multiple local solutions
when they exist. We allow errors in the estimation equations (3) and minimize some norm
of these errors. Inequality constraints are added, insuring that classes of size j in the sample
arise from classes of that or larger size in the population. A multi-start global optimization
algorithm is applied to this problem, with its options set to locate many local solutions.

To eliminate pi from our formulation, we substitute (1) into (2), yielding

P(i p| js) =µi P( js |i p)/
∑
k≥ j

µk P( js |kp), for all (i, j)

with i ≤ M, j ≤ M, j ≤ i (6)

The relaxed estimation equations (3) are:
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µi [1 − P(0s |i p)] −
i∑

j=1

mj P
(
i p| js

) = pdevi − ndevi , i = 1, . . . , M (7)

where pdevi and ndevi are nonnegative “deviation” variables representing the positive and
negative errors in the i th equation.

To reflect the fact that classes of size j in the sample, must arise from classes of size j or
higher in the population, we impose the constraints∑

i≥ j

µi ≥ mj , j = 1, . . . , M (8)

In addition, all variables µi , P(i p| js), pdevi , ndevi must be nonnegative. The objective is
to minimize some norm of the residuals in equation (7). If the L1 norm (the sum of absolute
residuals) is used, the objective is:

minimize abserr =
M∑

i=1

(pdevi + ndevi ) (9)

Alternatively, if the L2 norm is used, the objective would be

minimize sqerr =
M∑

i=1

(pdevi + ndevi )
2 (9.1)

If the Lmax norm is used, the objective would be

minimize maxerr = max
i

(pdevi , ndevi ) (9.2)

The formulation with the L2 and Lmax objective will be discussed in Subsection 3.3 below,
where a formulation which avoids the nondifferentiable max function in (9.2) is provided.

Any solution to this problem must have at least one of each pair of deviation variables
equal to zero, otherwise abserr, sqerr, or maxerr could be reduced without violating any
constraints by subtracting the smallest of each pair from both variables. Hence, in any optimal
solution, the sum of positive and negative deviation variables equals the absolute residual of
the equation in which those variables appear.

The resulting model minimizing (9) subject to (5)–(8), that is

minimize abserr =
M∑

i=1

(pdevi + ndevi )

subject to
M∑

i=1

iµi = Np,

P(i p| js) = µi P( js |i p)/
∑
k≥ j

µk P( js |kp),

for all (i, j) with i ≤ M, j ≤ M, j ≤ i

µi [1 − P(0s |i p)] −
i∑

j=1

mj P
(
i p| js

)
= pdevi − ndevi , i = 1, . . . , M∑

i≥ j

µi ≥ mj , j = 1, . . . , M
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has M(M − 1)
/

2 + 3M variables with non-negativity constraints and M(M − 1)
/

2 + 2M + 1 additional constraints. Eliminating P
(
i p| js

)
can reduce the model size. To

do this, define Emj , the expected number of classes of size j in the sample:

Emj =
M∑

i= j

µi P( js |i p) j = 1, . . . , M (10)

Substitute (10) into (6) to obtain

P(i p| js) = µi P( js |i p)/Emj , for all (i, j) with j ≤ i ≤ M

which we substitute into (7) to eliminate P
(
i p| js

)
. We obtain

µi [1 − P(0s |i p)] − µi

i∑
j=1

mj
P

(
js |i p

)
Emj

= pdevi − ndevi , i = 1, . . . , M

which we simplify by noting that
∑i

j=0 P
(

js |i p
) = 1. Finally, we obtain

µi

i∑
j=1

P
(

js |i p
) (

1 − mj

Emj

)
= pdevi − ndevi , i = 1, . . . , M (11)

It is necessary to impose small positive lower bounds on Emj because it appears in the
denominator in (11):

Emj ≥ eps j = 1, . . . , M (12)

where eps = 1.E − 10 has sufficed for our experiments with maximum class sizes up to 21.
These are needed because the values of Emj defined by (10) approach zero as j increases,
and are smaller than 1.E − 10 for M > 20.

The final formulation minimizes (9), subject to (5), (8), (10), (11) and (12), and is given
below:

minimize abserr =
M∑

i=1

(pdevi + ndevi ) (9)

subject to
M∑

i=1

iµi = Np, (5)

∑
i≥ j

µi ≥ mj , j = 1, . . . , M (8)

Emj =
M∑

i= j

µi P( js |i p) j = 1, . . . , M (10)

µi

i∑
j=1

P
(

js |i p
) (

1 − mj

Emj

)
= pdevi − ndevi , i = 1, . . . , M (11)

Emj ≥ eps j = 1, . . . , M (12)
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This model has 4M variables with non-negativity constraints and 4M + 1 additional
constraints, and is used in all our computational experiments.

3.2 Accounting for an unknown largest class size

Let cmax denote the true largest population class size, and M be the upper limit of all sums
over i and j in (5), (8), (10)–(12). Unfortunately, cmax is often unknown. We know that cmax
is at least as large as the size of the largest class in the sample, so this can be used as an
initial guess for M. Because the deviation variables allow errors of arbitrary size in (11), the
problem may have feasible solutions even if M < cmax . Our computational experience has
shown that the optimal value of the objectives (9) is often much larger if M < cmax than
for M ≥ cmax , as discussed in the next section, signaling that M must be increased. Once a
small error norm has been achieved, potential solutions can be found with that value of M or
larger values.

3.3 Minimizing the sum of squared errors and the maximum absolute error

A more compact formulation with only linear constraints arises if the L2 norm of the errors in
(9.1) is minimized, rather than the L1 norm. The nonlinear constraints (11) and the variables
pdevi and ndevi can be eliminated, because the sum of squares of errors may be written

M∑
i=1

(pdevi − ndevi )
2 =

M∑
i=1

µ2
i


 i∑

j=1

p( js |i p)(1 − mj/Emj )




2

(13)

This objective is minimized subject to the nonnegativities on the µi , the single linear popu-
lation constraint (5), the linear constraints defining the variables Emj (10), the lower bounds
on Emj (12), and the linear inequalities (8). This linearly constrained problem will be more
easily solved by gradient-based NLP solvers than the nonlinearly constrained L1 norm for-
mulation. However the objective (13) is nonconvex, and both L1 and L2 formulations have
about the same number of local minima in our test problems.

A formulation that minimizes the maximum absolute error in (11) is also useful, because
its solutions have the most uniform distribution of errors, and tend to have smoother class
size distributions µ. We define a new variable, z, whose optimal value is the max absolute
error, drop the variables pdevi and ndevi , and replace (11) by

−z ≤ µi

i∑
j=1

P( js |i p)[1 − mj/Emj ] ≤ z, i = 1, . . . , M (14)

The objective is now to simply

Minimize z (15)

subject to (14) and the linear constraints (5), (8), (10), and (12).

3.4 Choppy estimates and smoothness constraints

Often, optimal solutions of the above NLP estimation problem minimizing the L1 norm have
many components of the errors (where errori = pdevi − ndevi ) in the estimator equations
(11) equal to zero, a common characteristic of least absolute value approximations. This
causes many components of the estimate vector µ̂1, . . . , µ̂M to be zero. Examination of (11)
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shows that the error in the ith estimator equation is the product of µi and the weighted sum of
deviations between the expected sample for the population µ and the actual sample. Hence if
the ith error is nonzero, µi must be nonzero. If the ith error is zero, µi can be nonzero if the
second factor in the product is zero. This is illustrated in Table 1, which lists the error term
for each i in the bottom row. For i = 10, µ10 = 899 even though the error is zero. However
it is rare for the second term to vanish, so zero errors usually imply zero values for µi , as
occurs in the second to ninth best solutions to the problem in Table 1.

This “choppiness” leads to poor estimates when the true class size distribution is smooth.
This can be remedied by imposing smoothness constraints on the µi . Let x be the class size,
temporarily allowed to have any real value between 0 and M, and let µ(x) be the number
of classes of size x in the population. We impose smoothness by constraining µ(x) to be a
cubic spline over the interval [0, M], with a knot at the midpoint of this interval, denoted by
x = M/2. Hence

µ(x) = µ1(x), 0 ≤ x ≤ x (16)

µ(x) = µ2(x), x ≤ x ≤ M (17)

where

µk(x) = ak + bk x + ck x2 + dk x3, k = 1, 2 (18)

The coefficients of each cubic are constrained so that the value and first 2 derivatives of
the 2 polynomials are equal at the knot, x , which leads to three linear constraints on the
coefficients:

µ1(x̄) = µ2(x̄), µ′
1(x̄) = µ′

2(x̄), µ′′
1(x̄) = µ′′

2(x̄), (19)

These are easily handled by the NLP solvers we have used. The variables µi are now denoted
by µ(i), the polynomial coefficients ((ak, bk, ck, dk) are additional variables, and we add the
constraints (18)–(19), with x evaluated at all integral values, i, between 0 and M.

3.5 Error norms

In evaluating the quality of a particular solution, the standard norms of the difference
between estimated and true class size distributions can be misleading. To illustrate this, con-
sider the actual and two estimated size distributions shown in Table 6. The actual and the
estimated solutions each have 70 elements. The column labeled ‘standard’ contains the stan-
dard norm, i.e.

∑
i

∣∣µi − µ̂i
∣∣ divided by

∑
i µi , where µi is the actual class size and µ̂i is the

estimated class size. The standard norm is 2 for both estimates, but estimate 1 is “closer” to
the true distribution, because the elements in its incorrect classes need be shifted fewer posi-
tions to make it correct than those of estimate 2. The column labeled ‘Shift norm’ is a norm
we propose that takes positions shifted into account. We define a penalty cost ci j = |i − j |/ i

Table 6 Comparison of standard
and shift error norms

Class size 1 2 3 4 5 6 Norms

standard shift

Actual 10 0 0 0 0 10
Estimate 1 0 10 0 0 10 0 2 1.75
Estimate 2 0 0 10 10 0 0 2 2.33
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Fig. 1 Transportation network for shift norm

which takes into account the distance of the shift as well as imposing a higher penalty for
shifts from smaller classes. The shift norm is defined as the optimal objective value for the
following transportation problem divided by

∑
i µi .

min
∑
i, j

ci j xi j

Subject to
∑

j

xi j = iµ̂i (supply constraint)

∑
i

xi j = jµ j . (demand constraint)

For estimate 1, the shift norm is illustrated with the transportation network shown in Fig. 1.
The coefficients µ̂2 = 10, µ̂5 = 10, µ1 = 10, and µ6 = 10 result in supplies of 20 at node
2 and 50 at node 5 and demands of 10 at node 1 and 60 and node 6. The penalty costs are
c21 = 1

2 , c26 = 4
2 , c51 = 4

5 , and c56 = 1
5 .

The optimal solution values are x2,1 = 10, x2,6 = 10, x5,6 = 50. The optimal objective
value is 35, so the shift error norm is equal to 1.75. It is easy to verify that for estimate
2

(
µ̂3 = 10, µ̂4 = 10

)
, the optimal solution values are x31 = 10, x36 = 20, x46 = 40, the

optimal objective value is 46.67, so the shift error norm is equal to 2.33.

4 Coding and solving the nonlinear optimization model

The only nonlinearities in the L1 model arise from the quotient terms µi/Emj in the estima-
tor equations (11). These occur in a set of equality constraints, so the feasible region of any
problem instance may be nonconvex. Since all instances we have solved have multiple local
solutions, the feasible regions of all these instances are nonconvex. The L2 and Lmax models
also have multiple local optima due to the nonconvex objective (13) and the nonconvex con-
straints (14). In order to find many local solutions, hopefully including the global one, we
employed a new multi-start global optimization procedure called OptQuest/NLP (OQNLP)
(Ugray et al. 2001, 2005; Lasdon et al. 2005) to solve this problem. OQNLP is interfaced to
the popular algebraic modeling language GAMS (see www.gams.com), and this language is
well suited to closed-form models with summations over various subsets of the variable indi-
ces, so we expressed the problem (5), (8)–(12) in GAMS. Several of the example problems
solved here are available on the GAMS Development Corporation’s “Global World” website,
in a set of problems called “Globallib” at http://www.gamsworld.org/global/globallib.htm.

The OQNLP algorithm is an effective heuristic which calls a local NLP solver from a set
of diverse starting points. When it is called from GAMS, any GAMS NLP solver can be used.
We have used the CONOPT solver (Drud 1994), because it is efficient for large problems,
and it has quickly solved (i.e. found local optima for) many instances of this model with M
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ranging from 8 to 21. For the larger problems described in Sect. 5.3 we replaced CONOPT
by SNOPT, an implementation of the Successive Quadratic Programming algorithm (Gill
et al. 2005). The starting points for the NLP Solver are generated by a search algorithm
called OptQuest (Laguna 1997), which maintains a population of points (default size 10).
This is updated periodically, and new trial points are created as linear combinations of pairs of
population points. The algorithm has 2 stages: in stage 1 (default length 200 trial points), the
objective and constraint values at trial points are computed, no Solver calls are made, and the
best trial point found is chosen to start stage 2. In that stage (default length 800 trial points),
the first iteration calls the NLP Solver at the best stage one point, but the Solver is called at
subsequent trial points if and only if two “filtering” tests are passed. These are described in
(Ugray et al. 2005), and improved versions are in (Lasdon et al. 2005). We provide a brief
pseudo-code description of this algorithm below. See (Ugray et al. 2001; 2005; Lasdon et al.
2005) for more complete descriptions.

Although OQNLP can be applied to problems with both continuous and discrete variables,
the problems considered here have only continuous variables. Thus we restrict our attention
to optimization problems having the form:

Minimize f (x) (20)

subject to the general constraints

l ≤ G(x) ≤ u (21)

and the bound constraints

x ∈ S (22)

where x is an n-dimensional vector of continuous decision variables, G is an m-dimensional
vector of constraint functions, and the vectors u and l contain upper and lower bounds for
these functions. The set S is defined by simple bounds on x, and we assume that it is closed and
bounded, i.e., that each component of x has a finite upper and lower bound. This is required
by the starting point generators. The objective function f and the constraint functions G are
assumed to have continuous first partial derivatives at all points in S. This is necessary so
that a gradient-based local NLP solver can be applied to the NLP (20)–(22).

The L1 exact penalty function is used as a merit function for evaluating candidate starting
points. For the problem (20)–(22) this function is

P(x, w) = f (x) +
m∑

i=1

wiviol(gi (x)) (23)

where the wi are positive penalty weights, gi (x) is the ith component of G(x), and the function
viol(gi (x)) equals the absolute violation of the ith constraint of (2) at the point x. No terms
are included for bound violations because the bounds are always satisfied by the algorithms
considered here. It is well known (Nash and Sofer 1996) that if x∗ is a local optimum of (19)–
(21), λ∗ is a corresponding optimal Lagrange multiplier vector, the second order sufficiency
conditions are satisfied at (x∗, λ∗), and

wi > abs(λ∗
i ) (24)

then x∗ is a local unconstrained minimum of P . If (19)–(21) has several local minima, and
each wi is larger than the maximum of all absolute Lagrange multipliers for constraint i over
all these optima, then P has a local minimum at each of these local constrained minima.
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Let NEXT_CANDIDATE(xt) denote the starting point generator or driver, where xt is the
candidate starting point produced by that procedure and xt (i) refers to the i th candidate point
generated. We refer to the local NLP solver as L(xs, x f ), where xs is the starting point and
xf the final point. Pseudo-code for the algorithm, ignoring initializations, scalar input argu-
ments, and other details, is given below. In it, the function UPDATE LOCALS(xs, x f, w, R)

processes and stores solver output xf, produces updated penalty weights, w, and updates the
radii of the basins of attraction of all local solutions found thus far. R is the vector of all
these basin radii. A new point xf found by the NLP solver is stored in a list of “distinct”
local optima, henceforth referred to as the “list of locals”. Two local solutions xf1 andxf2
are considered distinct if ‖x f 1 − x f 2‖ ≤ epsl where ‖.‖ denotes the infinity norm and the
default value of epsl is 0.001.

After an initial call to L at the user-provided initial point, x0, stage 1 of the algorithm
performs n1 iterations in which NEXT_CANDIDATE(xt) is called, and the L1 Exact penalty
value P(xt, w) is calculated. The point with the smallest of these P values, denoted xt∗
below, is chosen as the starting point for the next call to L, which begins stage 2.

OQNLP Algorithm Pseudo-code

STAGE 1
x0 = user initial point
Call L(x0, x f ) attempt to generate initial local solution at user initial point

Call UPDATE LOCALS(x0, x f, w, R)
For n1 candidate points, indexed by i: generate Stage 1 set of candidate points

Call NEXT_CANDIDATE(xt(i))
Evaluate P(xt (i), w)

xt∗ = argmin
1≤i≤n1

P(xt (i), w) select candidate point with best penalty function value

Call L(xt∗, x f ) Call local solver at best stage 1 point
Call UPDATE LOCALS(xt∗, x f, w, R)

threshold = P(xt∗, w) initialize merit filter threshold

STAGE 2
For n2 candidate points, indexed by i: iterate for n2 candidate points

Call NEXT_CANDIDATE(xt (n1 + i))
Evaluate P(xt (n1 + i), w)

Perform merit and distance filter tests:
dstatus = distance filter(xt (n1 + i)) result is accept or reject candidate
point
mstatus = merit filter(xt (n1 + i), threshold) result is accept or reject
IF (dstatus and mstatus = “accept”)

Call L(xt (n1 + i), x f )

Call UPDATE LOCALS(xt (n1 + i), x f, w, R)

In the logic above, feasible points returned by the solver are inserted in the list of locals even
if the point does not satisfy the Kuhn–Tucker conditions to within the solver tolerances. Such
points may still have the best objective value found. The penalty weight update insures that
wi is always larger than the largest absolute multiplier for constraint i over all local optima.

Since our goal is to find all local solutions of this problem, we disabled the filtering tests
in stage 2 of OQNLP. This causes the NLP Solver to be called at every stage 2 iteration. The
default lengths for stages one and 2 given above were used, but we found that after 50 to 100
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solver calls, no improved local solution was found. Hence we employed an OQNLP option
which terminates the algorithm when 150 consecutive solver calls fail to locate an improved
objective value. This usually led to runs of 500 iterations or less, which took about 20-30
seconds on a 1 Ghz Pentium 4 PC. The default lengths for stages one and two were used for
all examples, because we had found previously that these values are very effective over a
wide range of problem sizes-see Ugray et al. (2001, 2005), and Lasdon et al. (2005). While
increasing both values is often useful in obtaining higher accuracy, this was not done here
because many local solutions with small positive objective values were obtained using the
default settings. Similarly, experiments with more than 150 consecutive solver calls generally
led to little or no improvement in the set of local solutions found.

5 Computational results

In this section, we provide computational results from a series of experiments on four different
populations. Three were artificial and one was from real data. The first population considered
is P2, an artificial population with 1000 classes of size 1 and 900 of size 10. Its class size
distribution is very irregular, and it has been difficult (Greenberg and Zayatz 1992) to estimate
the number of uniques in the population. Two additional artificial populations were used for
testing. Unlike P2, these populations have smooth class size distributions. P4 is uniformly
distributed with 100 classes of each size ranging from size 1 to size 14. P5 is similar to a
normal distribution with classes sizes increasing from 9 classes of size 1 to 90 classes of size
10 and then decreasing back down to 9 classes of size 21. In all computations involving these
populations, the CONOPT local NLP solver was used.

One additional population, P3, was considered for testing. This was a real population taken
from census data found in Zayatz (1991). P3 is much larger than the others, with 56,372 indi-
viduals. Of these, 22,026 were classified as unique. Other class sizes varied, with the largest
having 298 individuals. Zayatz (1991) provided a sample from P3. All other samples used in
our testing were simulated.

5.1 Estimates of irregular class size distributions (P2)

Tables 1–4 below show the estimates {µ̂i } obtained by the recursive and optimization ap-
proaches using the L1 norm for 50%, 30%, 20%, and 10% samples from a population P2

with 1000 classes of size 1 and 900 of size 10. In Tables 2–5, all local solutions with small
norms are shown, and all class size values are rounded to integers. The best L1 solution and
the recursive procedure produce very similar results for the 50% and 30% samples from P2,
and closely estimate the class size distribution of the population.

The recursive and best optimization estimates are not as accurate or similar to one another
for the 20% sample (Table 3), but they both roughly identify the population. However, the
number of local L1 solutions grows as the sampling rate decreases, and the third best solution
for the 20% sample is quite different from the best. It has no uniques, many classes of size 7
and 9, and represents an alternative population whose expected sample is close to the input
sample.

For the 10% sample from P2 (Table 4), the recursive method converges to two size dis-
tributions from 2 different starting points, one correct and one with no small and many large
classes. The OQNLP algorithm finds 4 low norm local L1 solutions for this sample, with
the first and third best similar to the true population, but the other two sharply different.
Solutions 1 and 3 have many uniques and many large classes, while 2 and 4 have no classes
of sizes 1 through 6 and many of sizes 7 through 10. The “standard” and “shift” columns of
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Table 7 Actual sample and expected samples from L1 solutions-10% sample from P2

Sample Error Class sizes

1 2 3 4 5 6 7 8 9 10

Actual 449 174 52 10 1 0 0 0 0 0
Expected L1,1 0.0033 449 174.7 51.0 9.78 1.28 0.116 0.0073 0.0003 0 0
Expected L1,2 0.0384 441.7 187.0 47.8 8.24 1.00 0.087 0.0053 0.0002 0 0
Expect L1,3 0.0045 448.8 175.0 50.7 9.83 1.30 0.119 0.0076 0.0003 0 0
Expected L1,4 0.0464 439.8 189.8 47.7 7.69 0.82 0.058 0.0027 0.0001 0 0

Tables 3 and 4 contain the norms described in Section 3.5 with both normalized by dividing
by the norm of the true size distribution. These norms provide the same ranking of solutions
for the 20% sample, and nearly the same for the 10%.

Although the two pairs of similar solutions in Table 4 are very different from each other,
all are populations that could have generated the 10% sample. To see this, we calculate the
“expected sample” for each solution using equation (10). Table 7 illustrates that for the four L1

solutions listed in Table 4, the expected samples are all very close. The relative absolute error
column gives the difference between expected and actual samples,

∑
j

∣∣Emj − mj
∣∣/∑

j mj .
This relative error is always small, with values from .0033 to .046. This is to be expected since
(11) shows that the optimization model will try to make mj

/
Emj as close to 1 as possible.

Table 5 shows the estimates obtained by the recursive and optimization methods for a
10% sample from P1, a population with no small and many large classes. The sample is very
similar to the 10% sample from P2 in Table 4. The estimates of both the recursive procedure
and the best optimization solution are basically correct. Table 5 also shows the class size dis-
tributions and objective values of the best 5 (of 15 found) local solutions to the optimization
problem, plus the worst. All have small objective values, ranging from 3.5 E−5 to 1.8E−4.
The class size distributions are all skewed heavily toward the largest sizes: sizes 1 through
4 are mostly zero with occasional small positive values, while size 9 is by far the largest,
followed by size 8.

Table 8 shows estimates based on four different 10% samples from P2, corresponding to
the best local solutions to the optimization problem for each sample. The results show that
the class size distributions of these solutions are not all close to the actual P2 distribution, but
instead contain diverse distributions that could have generated the sample. The standard and
shift columns contain the error norms described in Sect. 3.5. For the first sample, the L1,4

solution is the only one closely resembling the true population, and it has the lowest value
of both error norms by far. The second sample has two solutions (1 and 3) that resemble
population P2. The best of these, solution 3, has the smallest values of both error norms, but
the L1 error for solution 1 is about the same as for solutions 4 and 5, which have no small
classes. The shift error norm clearly ranks solution 1 as second best. For samples 3 and 4,
none of the local solutions resemble the true population, since they all estimate µ1 through
µ6 to be zero.

5.2 Estimates of smooth class size distributions (P4 and P5)

Table 9 shows the 3 lowest L1, L2, and Lmax norm class size distribution estimates for a
population P4 with 100 classes of each size (µ1 = µ2 = · · · = µ14 = 100), based on
the 30% sample shown. No smoothing constraints (see Sect. 3.4) were included. The best
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Table 8 Local solutions and error norms for three different 10% Samples from P2

obj Class sizes Norms

1 2 3 4 5 6 7 8 9 10 standard shift

Population 1000 0 0 0 0 0 0 0 0 900

Sample 1 440 171 56 10 2
L1,1 0.03 0 0 0 0 0 0 0 0 1041 63 1.24 0.957
L1,2 0.12 0 0 0 0 0 0 273 197 0 652 0.81 0.863
L1,3 0.16 0 0 0 0 0 0 0 564 0 549 0.89 0.923
L1,4 1.03 760 0 0 0 0 0 0 0 0 924 0.18 0.114

Sample 2 440 186 42 13 2
L1,1 2.9E−4 0 468 0 0 0 0 0 0 135 785 0.83 0.563
L1,2 2.7E−3 0 0 0 0 0 0 0 87 1033 0 1.26 0.989
L1,3 1.7E−2 578 0 0 0 0 0 0 209 46 733 0.37 0.383
L1,4 1.1E−1 0 0 0 0 0 0 328 204 0 607 0.83 0.958
L1,5 1.4E−1 0 0 0 0 0 0 481 0 0 663 0.84 0.985
L1,6 1.7E−1 0 0 0 0 0 0 0 647 0 483 0.94 1.009

Sample 3 448 151 64 13 1
L1,1 0.09 0 0 0 0 0 0 0 0 979 119 1.19 0.925
L1,2 0.21 0 0 0 0 0 0 241 208 0 666 0.80 0.824
L1,3 0.25 0 0 0 0 0 0 0 530 0 576 0.87 0.886

Sample 4 440 171 56 10 2
L1,1 0.03 0 0 0 0 0 0 0 0 1041 63 1.24 0.957
L1,2 0.12 0 0 0 0 0 0 273 197 0 652 0.81 0.863

Table 9 Nonsmooth estimates of Uniform 14 class population, 30% sample

obj Class sizes Norm

1 2 3 4 5 6 7 8 9 10 11 12 13 14 standard

Population 100 100 100 100 100 100 100 100 100 100 100 100 100 100
Sample 303 301 215 171 113 37 15 3 0 0 0 0 0 0
L1,1 2.72E−3 1 0 0 541 0 0 0 0 0 531 0 0 232 0 1.90
L1,2 4.78E−3 0 43 0 521 0 0 0 0 0 371 0 385 0 0 1.76
L1,3 5.36E−3 331 0 0 0 0 488 0 0 0 0 572 0 0 68 1.94

L2,1 2.73E−6 0 0 0 541 0 0 0 0 0 531 0 0 232 0 1.90
L2,2 1.19E−5 0 44 0 519 0 0 0 0 1 371 0 384 0 0 1.76
L2,3 2.08E−5 331 0 0 0 0 488 0 0 0 0 571 1 1 67 1.94

Lmax,1 6.74E−4 0 0 0 541 0 0 0 0 0 531 0 0 232 0 1.90
Lmax,2 2.02E−3 330 0 0 0 0 487 0 0 0 0 571 1 1 67 1.94
Lmax,3 2.54E−3 0 1 432 0 0 102 4 4 341 0 0 453 1 0 1.67

L1 estimates all have 4 positive components, all others zero, and this is typical of the 30
local optima found. The “standard” column contains the standard error norm with values
ranging from 1.79 to 2.03 times the population norm. For the L1 norm, all components of
the errors,pdevi − ndevi , in the estimator equations (12) are zero except one.

The estimates produced using the L2 and Lmax objectives have similar properties, with
3 or 4 large components and the rest either much smaller or zero. The max norm estimates
have a few large components, a few very small ones, with the rest zero. The same pattern
occurs with a bell-shaped population distribution (P5) with M = 21.
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Fig. 2 Estimate from a 50% sample, Uniform population

Fig. 3 Estimate from a 30% Sample, Uniform population

Figures 2–4 below plot the best L1 solutions for 50%, 30%, and 10% samples from the
uniform population described above, adding the smoothness constraints described in Sect.
3.4. These estimates are much better than those generated without the smoothness constraints,
and are reasonably accurate for the 50% and 30% samples. The standard error norms, for
these sampling rates are 0.25 and 0.51 respectively. The standard error norm for the best max
norm local solution for the 10% sample is 1.90, but the second best local solution for this
sample using the max norm has a standard error norm of 0.63, and is graphed in Fig. 5 below.

Figures 6–9 plot the estimates obtained using the L1 norm with smoothing constraints,
based on 50%, 30%, and 10% samples from population P5 with a bell-shaped population
distribution. These estimates are very accurate for the 50% sample, and moderately accurate
for 30%. Of the two 10% estimates, the lowest L1 norm estimate is quite inaccurate, with
relative error 0.67, but the second best solution has relative error of only 0.14, demonstrating
again the value of obtaining multiple local solutions.
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Fig. 4 Estimate from 10% sample, Uniform population

Fig. 5 Second best estimate, max norm, 10% sample, Uniform population

Fig. 6 Best L1 estimate for 50% sample from bell-shaped distribution

5.3 Estimates for a large, realistic example

Table 10 illustrates results from 5 samples from a population we refer to as P3. This is a
large, realistic population based on census data with 56, 372 individuals and 22026 uniques.
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Fig. 7 Best L1 estimate for 30% sample from bell-shaped distribution

Fig. 8 Best L1 estimate for 10% sample from bell-shaped distribution

Fig. 9 Second best L1 estimate for 10% sample from bell-shaped distribution

The samples are each of size 9,383, representing the 1 in 6 sampling rate which has been
used for the Census long form. We found this practical problem to be much more difficult
to solve than the artificial problems considered above. Solution times were long and many
poor solutions were generated. To deal with this, Steel (1999) suggested that a monotonicity
constraint µi ≥ µi+1, i = 1, . . . , M − 1 would be appropriate. This added constraint was
used to correct for choppiness and to reflect the belief that the populations with disclosure risk
have a high number of uniques, fewer pairs, etc. This adds an additional M − 1 constraints
to the optimization problem, but these do not increase the solution time of either CONOPT
or SNOPT (they may decrease it), and adding them significantly improved the results. To
illustrate the problem sizes associated with our 5 samples from P3, the optimization problem
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Table 10 Results for real population P3 (correct number of uniques = 22026)

Sample Estimate Relative Mean of Relative Median of Relative Maximum of Relative Number of
associated error estimates of error estimates of error estimates of error local
with best (%) all solutions (%) all solutions (%) all solutions (%) solutions
objective obtained

1 15379 30 18355 17 19056 13 21674 2 13
2 18701 15 19903 10 18717 15 22279 1 9
3 23983 9 22781 3 23983 9 23984 9 8
4 23746 8 23007 4 23786 8 25194 14 13
5 25179 14 23705 8 24961 13 25235 15 26

for sample 2 has 641 constraints and 917 variables. Running the 5 samples with a limit of 30
SNOPT calls led to solution times of from 3 to 5 minutes.

We found that when CONOPT was used as OQNLP’s local Solver, many CONOPT calls
terminated without finding a feasible solution. CONOPT first minimizes the sum of constraint
violations in an attempt to find a feasible solution, then minimizes the true objective from
that point. In problem instances associated with this large population, CONOPT often ended
with an infeasible local minimum of the sum of constraint violations. Our prior experience
was that SNOPT (Gill et al. 2005) often has fewer infeasible terminations in such situations,
and that proved true again. Thus these experiments used SNOPT.

When multiple solutions are generated, it is not clear how to use the results to estimate
disclosure risk. One possibility is to be conservative and use the solution with the largest
value for the number of uniques. Other possibilities are to use the mean or median of all
the solutions obtained. The mean, median, and maximum of the estimate of uniques over
all local solutions obtained were calculated for each of 5 samples from P3. Estimates of the
number of uniques for the solution with the best objective value, and the mean, median, and
maximum of this estimate over all solutions obtained, plus the number of local solution used
for these calculations is listed in Table 10. Relative errors of each estimation procedure are
also shown. As expected, the solution with the lowest objective value is usually not the one
that is closest to the correct value. Overall, it appears to be best to use the solution with
the largest number of uniques to estimate disclosure risk. This has the advantage of being
conservative and relatively accurate. More experiments are needed to assess the generality
of this outcome.

6 Conclusions

Formulating this difficult class of estimation problems as the minimum norm solution of
a system of nonlinear equations leads to a nonconvex problem which often has many local
solutions, especially for low sampling rates. These solutions correspond to populations which
could have generated the input sample. When more than one population can generate a sam-
ple, the OQNLP multistart solver finds multiple—if not all—local solutions.

Unless additional information is available, there is not likely to be a method that could
accurately determine from which population the sample was actually selected. However,
when all potential solutions are identified, rather than just one that may be incorrect, dis-
closure risk can be more accurately assessed. Similarly, when multiple solutions are found
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for the number of species in a population, this provides information about the degree of
uncertainty in the estimates.
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